Hard Exclusive Meson Electroproduction

P. Kroll
Fachbereich Physik, Univ. Wuppertal and Univ. Regensburg Williamsburg, June 2010

Outline:

- Handbag factorization and GPDs
- Transversely polarized photons matter
- Vector meson production
- Parameterizing GPDs
- Pion production (twist-3, transversity GPDs)
- Summary

The handbag approach

rigorous proof of collinear factorization for $Q^{2} \rightarrow \infty$ (Radyushkin (96); Collins et al (97))
hard subprocesses
$\gamma^{*} g \rightarrow V g, \gamma^{*} q \rightarrow V(P) q$
and GPDs and meson w.f. (encode the soft physics)

dominant transition $\gamma_{L}^{*} \rightarrow V_{L}, P$
other transitions power suppressed but often non-negligible (e.g. $\gamma_{T}^{*} \rightarrow V_{T}, \pi$)

GPDs

GPDs: $F=F(\bar{x}, \xi, t)$

$$
\begin{aligned}
& F=H, E, \widetilde{H}, \widetilde{E}, H_{T}, \ldots \\
& x=\frac{\bar{x}+\xi}{1+\xi} \quad x^{\prime}=\frac{\bar{x}-\xi}{1-\xi}
\end{aligned}
$$

constraints:
Forward limits from DIS: $H^{q}(\bar{x}, \xi=t=0)=q(\bar{x}), \widetilde{H}^{q} \rightarrow \Delta q(\bar{x})$
$H_{T}^{q} \rightarrow \delta^{q}(\bar{x}) \quad$ trans. PDFs, known from SIDIS exp. Anselmino et al (07))
lowest moments (proton form factors): $F_{1}^{q}(t)=\int d \bar{x} H^{q}(\bar{x}, \xi, t), F_{1}=\sum e_{q} F_{1}^{q}$

$$
E \rightarrow F_{2}, \widetilde{H} \rightarrow F_{A}
$$

access to parton angular momentum (Ji's sum rule)
Fourier transform $\boldsymbol{\Delta} \rightarrow \mathbf{b}\left(\Delta^{2}=-t\right)$: information on parton localization in transverse position space

Transverse photon polarization matters

vector-meson electroproduction $R=\sigma_{L} / \sigma_{T} \quad$ (HERA $W \simeq 80 \mathrm{GeV}$)
$\gamma_{T}^{*} \rightarrow V_{T}$ transitions substantial power corr. and/or higher twist needed

various moments of π^{+}cross section measured with trans. pol. target
$\sin \phi_{s}$ moment very large
does not seem to vanish for $t^{\prime} \rightarrow 0$
$A_{U T}^{\sin \phi_{S}} \propto \operatorname{Im} \mathcal{M}_{0+, 0+}^{*} \mathcal{M}_{0-,++}$ requires n -f. ampl. $\mathcal{M}_{0-,++}$
$\gamma_{T}^{*} \rightarrow P$ transitions substantial

HERMES

$$
Q^{2} \simeq 2.5 \mathrm{GeV}^{2}, W=3.99 \mathrm{GeV}
$$

The $\gamma^{*} p \rightarrow V B$ amplitudes

consider large Q^{2}, W and small t;
kinematics fixes skewness: $\xi \simeq \frac{x_{\mathrm{Bj}}}{2-x_{\mathrm{Bj}}}\left[1+m_{V}^{2} / Q^{2}\right] \simeq x_{\mathrm{Bj}} / 2+$ m.m.c.

$$
\begin{aligned}
& \mathcal{M}_{\mu+, \mu+}(V)=\frac{e_{0}}{2}\left\{\sum_{a} e_{a} \mathcal{C}_{V}^{a a}\left\langle H_{\mathrm{eff}}^{g}\right\rangle_{V \mu}+\sum_{a b} \mathcal{C}_{V}^{a b}\left\langle H_{\mathrm{eff}}^{a b}\right\rangle_{V \mu}\right\}, \\
& \mathcal{M}_{\mu-, \mu+}(V)=-\frac{e_{0}}{2} \frac{\sqrt{-t^{\prime}}}{M+m}\left\{\sum_{a} e_{a} \mathcal{C}_{V}^{a a}\left\langle E^{g}\right\rangle_{V \mu}+\sum_{a b} \mathcal{C}_{V}^{a b}\left\langle E^{a b}\right\rangle_{V \mu}\right\},
\end{aligned}
$$

$\mathcal{C}_{V}^{a b}$ flavor factors, $M(m)$ mass of $B(p), \quad H_{\text {eff }}=H-\xi^{2} /\left(1-\xi^{2}\right) E$
$F^{a a}=F^{a} \quad F^{a b}=F^{a}-F^{b} \quad(a \neq b)$
$\langle F\rangle_{V \mu}=\sum_{\lambda} \int_{-1}^{1} d \bar{x} \mathcal{H}_{\mu \lambda, \mu \lambda}^{V}\left(\bar{x}, \xi, Q^{2}, t=0\right) F(\bar{x}, \xi, t)$
electroproduction with unpolarized protons at small ξ :
E not much larger than H (see below) $\Longrightarrow H_{\text {eff }} \rightarrow H$ for small ξ $\left|M_{\mu-, \mu+}\right|^{2} \propto t / m^{2}$ neglected $\quad \Longrightarrow$ probes $H \quad\left(\right.$ exception $\left.\rho^{+}\right)$ trans. polarized target: probes $\operatorname{Im}\left[\langle E\rangle^{*}\langle H\rangle\right]$ interference

What did (can) we learn about GPDs from DME?

What is probed by exp.: imag. parts \propto GPDs at $\xi \simeq \bar{x}+\mathcal{O}\left(<k_{\perp}^{2}>/ Q^{2}\right)$ real parts - convolutions, dominated by \bar{x} near ξ

$$
\begin{aligned}
\xi & \simeq 10^{-3} \text { HERA } \\
& \simeq 10^{-2} \text { COMPASS }
\end{aligned}
$$

$$
\simeq 10^{-1} \text { HERMES } \quad \bar{x} \geq 0.6 \text { not probed }
$$

$$
\simeq 0.1-0.4 \mathrm{JLab} \quad \text { large } \bar{x} \text { region important }
$$

LO, lead.twist accuracy (Teryaev (05)) e.g.:

$$
\langle F\rangle=c \int_{-1}^{1} d \bar{x}\left[\frac{1}{\bar{x}-\xi+\imath \epsilon}+\frac{1}{\bar{x}+\xi-\imath \epsilon}\right] F(\bar{x}, \xi, t)
$$

$$
\operatorname{Im}\langle F\rangle \sim F(\xi, \xi, t), \operatorname{Re}\langle F\rangle=c P V \int_{0}^{1} d \bar{x} \frac{2 \bar{x}^{2}}{\xi^{2}-\bar{x}^{2}} F(\bar{x}, \bar{x}, t)
$$

As compared to DVCS:
disadvantage: need for GPDs and meson wave functions
advantages: allows for flavor separation
$J / \Psi:$
gluon
$\phi: \quad$ gluon + sea
$\rho^{0}, \omega: \quad$ gluon+sea+valence
ρ^{+}, π^{+}:
valence
(mesons select their valence quarks from the proton to lead. twist accuracy)

$$
\begin{aligned}
& \text { mainly } H \\
& \pi^{+}: \widetilde{H}, \widetilde{E}
\end{aligned}
$$

Parameterizing the GPDs

double distribution ansatz (Mueller et al (94), Radyushkin (99))

$$
F_{i}\left(\bar{x}, \xi, t^{\prime}\right)=\int_{-1}^{1} d \beta \int_{-1+|\beta|}^{1-|\beta|} d \alpha \delta(\beta+\xi \alpha-\bar{x}) f_{i}\left(\beta, \alpha, t^{\prime}\right)+D_{i} \Theta\left(\xi^{2}-\bar{x}^{2}\right)
$$

DD: $f_{i}=$ zero-skewness GPD \times weight fct (generating ξ dep.)

$$
\begin{aligned}
F(\bar{x}, \xi=0, t)= & f(\bar{x}) \exp \left[\left(b_{f}+\alpha_{f}^{\prime} \ln (1 / \bar{x})\right) t\right] \\
& f=q, \Delta q, \delta^{q} \text { for } H, \widetilde{H}, H_{T} \text { or } c \bar{x}^{-\alpha_{f}(0)}(1-\bar{x})^{\beta_{f}}
\end{aligned}
$$

Regge-like t dep. large x, large $-t$ more complicated profile fct Diehl et al (04) advantage: polynomiality and reduction formulas automatically satisfied
dual parameterization (Polyakov(99), Polyakov-Semenov(09))
repres. of GPDs in terms of infinite sum of t-channel resonances - 'duality' in practice: truncation of partial wave series at small j
e.g. Bechler-Mueller(09) for π^{+}production:
zero-skewness GPD (as above) and rot. matrices $d_{0, m}^{j+m}(1 / \xi)$

Valence quark GPDs

satisfy:

- polynomiality
- PDFs (if available)
- nucleon form factors
- positivity bounds
scale: $4 G e V^{2}$

	H	E	\widetilde{H}
u_{v}	2	$\kappa_{u}=1.67$	0.93
d_{v}	1	$\kappa_{d}=-2.03$	-0.34

lowest moments fix signs and rel. sizes if GPDs have no nodes and similar t dependence

Comparison with lattice results

Relative sizes of the moments and relative t dependence in reasonable agreement with DD ansatz
in general t dependences flatter than DD ansatz (and form factor data)
H_{T} lattice moments are larger by about factor of 2 as those constructed from transversity PDFs with help of DD ansatz

Numerical results for vector mesons

Goloskokov-K. 06, 07, 08, 09
subprocess amplitudes: mod. pert. approach (Sterman et al (93))
LO pQCD + quark trans. mom. + Sudakov suppr. \Rightarrow lead. twist for $Q^{2} \rightarrow \infty$

GPDs constructed from CTEQ6 PDFs through the double distr. ansatz

Gaussian wave fcts for the mesons $\quad \Psi_{V j}\left(\tau, \mathbf{k}_{\perp}\right) \propto \exp \left[-a_{V j}^{2} \mathbf{k}_{\perp}^{2} /(\tau \bar{\tau})\right]$
L an T different, free parameters $-a_{L, T}^{V}\left(\right.$ transverse size $\left.\left\langle k_{\perp}^{2}\right\rangle^{1 / 2} \propto 1 / a_{L, T}^{V}\right)$
fit to all data from HERMES, COMPASS, E665, H1, ZEUS
cover large range of kinematics $\quad Q^{2} \simeq 3-100 \mathrm{GeV}^{2} \quad W \simeq 5-180 \mathrm{GeV}$ probes H

ρ^{0} and ϕ cross sections

at $Q^{2}=4(3.8) \mathrm{GeV}^{2} \quad \operatorname{E665}(\Delta), \operatorname{HERMES}(\bullet), \operatorname{CORNELL}(\boldsymbol{\Delta})$
ZEUS (■), H1 (■), CLAS (○)
Goloskokov-K (09)
double distribution ansatz too simple for valence quarks for large ξ ?
breakdown of handbag physics?
ω, ρ^{+}very large at small W too CLAS
JLAB12 may explore region close to minimum

What do we know about E_{v} ?

analysis of Pauli FF for proton and neutron at $\xi=0$ Diehl et al (04):

$$
F_{2}^{p(n)}=e_{u(d)} \int_{0}^{1} d x E_{v}^{u}(x, \xi=0, t)+e_{d(u)} \int_{0}^{1} d x E_{v}^{d}(x, \xi=0, t)
$$

ansatz for small $-t: E_{v}^{a}=e_{v}^{a}(x) \exp \left\{t\left(\alpha_{v}^{\prime} \ln (1 / x)+b_{a}^{e}\right)\right\}$
forward limit: $e_{v}^{a}=N_{a} x^{-\alpha_{v}(0)}(1-x)^{\beta_{v}^{a}}$ (analogously to PDFs)
N_{a} fixed from $\kappa_{a}=\int_{0}^{1} d x E_{v}^{a}(x, \xi=0, t=0)$
fitting FF data provides: $\beta_{v}^{u}=4, \beta_{v}^{d}=5.6$ (other powers not excluded in 04 analysis) new JLab data on $G_{E, M}^{n}$
up to $3.5(5.0) \mathrm{GeV}^{2}$ favor $\beta_{v}^{u}<\beta_{v}^{d}$ Input to double distribution model

E for gluons and sea quarks

sum rule (Ji's s.r. and momentum s.r. of DIS) at $t=\xi=0$

$$
\int_{0}^{1} d x x e_{g}(x)=e_{20}^{g}=-\sum e_{20}^{a_{v}}-2 \sum e_{20}^{\bar{a}}
$$

valence term very small, in particular if $\beta_{v}^{u} \leq \beta_{v}^{d}$
\Rightarrow gluon and sea quark moments cancel each other almost completely positivity bound forbids large sea \Rightarrow gluon small too
Simplest variant (1): neglect $E^{g}, E^{\text {sea }}$ (other variants also used)

Ji's sum rule (at scale $4 \mathrm{GeV}^{2}$):
$J^{u}=0.250 \quad J^{d}=0.020 \quad J^{s}=0.015 \quad J^{g}=0.214 \quad \sum J^{i} \simeq 1 / 2$
$\Longrightarrow J^{u_{v}}=0.211(17) \quad J^{d_{v}}=0.000(19) \quad$ (Diehl et al (04))
lattice Hägler et al (07) at m_{π} (phys): $J^{u}=0.214(27) \quad J^{d}=-0.001(27)$ sea quark contr. seems to be small

Results for $A_{U T}(V)$

Goloskokov-K (08)

$W=5 \mathrm{GeV} \quad Q^{2}=3 \mathrm{GeV}^{2}$ variant $1,2,3,4$
preliminary data: HERMES (07)

t dependence controlled by trivial factor $\sqrt{-t^{\prime}}$ except for ρ^{+}: since $H_{v}^{u}-H_{v}^{d}$ small and $E_{v}^{u}-E_{v}^{d}$ large
E non-negligible in cross section, contribution from helicity flip ampl. $\propto t^{\prime}$ more data on ρ^{0}, ω, ϕ from HERMES and COMPASS will come

Exclusive electroproduction of pions

as for vector-mesons with replacement $H \Rightarrow \widetilde{H}$ and $E \Rightarrow \widetilde{E}$
for π^{+}production: only $\widetilde{H}^{(3)}=\widetilde{H}_{v}^{u}-\widetilde{H}_{v}^{d}$ and $\widetilde{E}^{(3)}=\widetilde{E}_{v}^{u}-\widetilde{E}_{v}^{d}$ (including the pion pole)
for π^{0} production: $e_{u} \widetilde{H}_{v}^{u}-e_{d} \widetilde{H}_{v}^{d}$ and $e_{u} \widetilde{E}_{v}^{u}-e_{d} \widetilde{E}_{v}^{d}$ (without pion pole) JLab kinematics: π^{0} cross section underestimated by handbag appr (as for ρ^{0})?
full pion FF needed and extra \widetilde{E} see Goloskokov-K(09), Bechler-Müller (09)
Bechler-Müller (09): leading-twist analyses with $\alpha_{s}^{\text {eff }}=0.8$, only LL ampl. Goloskokov-K(09): plus twist-3 effect for LT ampl. (transversity GPDs) Ahmad et al (08): only π^{0} production with contr. from transversity GPDs

A twist-3 contribution

$A_{U T}^{\sin \phi_{s}} \sim \operatorname{Im}\left[\mathcal{M}_{0-++}^{*} \mathcal{M}_{0+0+}\right]$
\mathcal{M}_{0-++} fed by handbag dynamics but with transversity GPDs (Hoodbhoy-Ji (98), Diehl (01)) and twist-3 pion wave fct
$\mathcal{M}_{0-++} \sim\left\langle H_{T}\right\rangle$

twist-3 pion DA: $\left\langle\pi^{+}\left(q^{\prime}\right)\right| \bar{d}(x) \gamma_{5} u(-x)|0\rangle=f_{\pi} \mu_{\pi} \int d \tau \tau^{q^{\prime} \cdot x \tau} \Phi_{P}(\tau)$ local limit $x \rightarrow 0$ related to divergency of axial-vector current
$\Rightarrow \mu_{\pi}=m_{\pi}^{2} /\left(m_{u}+m_{d}\right) \simeq 2 \mathrm{GeV}$ at scale 2 GeV
twist-3 large, only suppressed by μ_{π} / Q
$\Phi_{P}=1$ (under neglect of $q \bar{q} g$ Fock state) Braun-Halperin (90)
small $\xi: H_{T}$ should dominate; take transversity PDF from Anselmino et al (07)
$\delta^{a}=7.46 N_{T}^{a}(1-x)^{5}[q(x)+\Delta q(x)] \quad N_{T}^{u}=0.5 \quad N_{T}^{d}=-0.6$
input to double distr. ansatz

Results on π^{+}production

Goloskokov-K (09) $Q^{2}=2.5 \mathrm{GeV}^{2} \quad W=3.99 \mathrm{GeV}$
data HERMES (07)(08)

Bechler-Müller (09) only LL amplitudes (black lines)

Summary

- handbag approach: fair agreement with cross section data for vector mesons at small ξ has been found
GPDs (H) modeled through reggeized double distributions and subprocess calculated within mod. pert. approach few free parameters (a_{V})
extension to large ξ (JLab kinematics) seems to be difficult
- single spin asymmetries will fix E; probably dominated by valence quarks; E^{g} and $E^{\text {sea }}$ probably small
- first attempts to understand π^{+}electroproduction required are GPDs \widetilde{H} and \widetilde{E}, pion exchange and a twist-3 effect for transversely pol. photons (e.g. helicity-flip GPD H_{T} and twist-3 pion wave fct.)

